Dissemin is shutting down on January 1st, 2025

Published in

Rock Mechanics and Its Applications in Civil, Mining, and Petroleum Engineering

DOI: 10.1061/9780784413395.020

Links

Tools

Export citation

Search in Google Scholar

Centrifuge modelling of the collapse of shaft linings

Proceedings article published in 2014 by W. Yang, A. M. Marshall ORCID, L. R. Stace, D. Wanatowski
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The collapse of abandoned and often hidden mine shafts is a serious problem in the UK and many parts of Europe. The collapse of these shafts is often related to the failure of the shaft lining. Understanding the mechanisms of ground movements around deforming/collapsing mine shafts is, therefore, important in the assessment of mine shaft location as well as lining condition. This paper presents an experimental study of the mechanisms of soil failure around a deforming shaft lining. Geotechnical centrifuge modelling of reduced-scale buried mine shafts was tested to determine the magnitude and pattern of ground deformations that occurred during loss of internal support pressure. An axis-symmetric centrifuge container was used along with half-cylindrical model shafts. These allowed for the acquisition of digital images of the sub-surface soil and mine shafts which enabled the measurement of soil and shaft deformation using image analysis techniques. The results from two model shaft tests are presented. The first test involved the loss of internal support along the entire shaft length, whereas the second test studied the effect of a discrete weakened zone within the lining.