Published in

Elsevier, Progress in Solid State Chemistry, 4(42), p. 128-148

DOI: 10.1016/j.progsolidstchem.2014.04.007

Links

Tools

Export citation

Search in Google Scholar

3d-Transition Metal Doped Spinels as High-Voltage Cathode Materials for Rechargeable Lithium-Ion Batteries

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Finding appropriate positive electrode materials for Li-ion batteries is the next big step for their application in emerging fields like stationary energy storage and electromobility. Among the potential materials 3d-transition metal doped spinels exhibit a high operating voltage and, therefore, are highly promising cathode materials which could meet the requirements regarding energy and power density to make Li-ion batteries the system of choice for the above mentioned applications. The compounds considered here include substituted Mn-based spinels such as LiM0.5Mn1.5O4 (M = Ni, Co, Fe), LiCrMnO4 and LiCrTiO4. In this review, the recent researches conducted on these spinel materials are summarized. These include different routes of synthesis, structural studies, electrode preparation, electrochemical performance and mechanism of Li extraction/insertion, thermal stability as well as degradation mechanisms. Note that even though the Ni-, Co-, and Fe-doped materials share the same chemical formula, the oxidation state distributions as well as the operating voltages are different among them. Furthermore, apart from the initial structural similarity, the Li-intercalation takes place through different mechanisms in different materials. In addition, this difference in mechanism is found to have considerable influence on the long-term cycling stability of the material. The routes to improve the electrochemical performance of some of the above candidates are discussed. Further emphasis is given to the parameters that limit their application in current technology, and strategies to overcome them are addressed.