Published in

Elsevier, Cellular Signalling, 12(26), p. 2614-2620

DOI: 10.1016/j.cellsig.2014.08.003

Links

Tools

Export citation

Search in Google Scholar

Oxysterols act as promiscuous ligands of class-A GPCRs: In silico molecular modeling and in vitro validation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

According to classical pharmacology, each neurotransmitter/hormonal receptor, including GPCRs, is exclusively activated by highly specific ligands. However, recent evidence challenges this dogma. Oxysterols are produced at inflammatory sites and can surprisingly potently activate the Epstein Barr virus induced gene receptor-2 (EBI2), a GPCR involved in adaptive immune responses. Similarly, oxysterols promiscuously operate CXCR2, a chemokine receptor participating to immune reactions and cancer development. Both EBI2 and CXCR2 are phylogenetically related to GPR17, another GPCR implicated in inflammatory/immune neurodegenerative events. Here, we used an integrated approach combining comparative modelling, molecular docking and in vitro experiments to investigate their potential interactions with oxysterols. All three receptors share the binding site to allocate oxysterols with different local arrangements, higher sensitivity to specific oxysterols and different activation thresholds. Such differences may dictate the diverse biological effects induced by oxysterols, depending on production site, concentration, specific spatiotemporal features and receptor expression on targeted cells. Thus, EBI2, CXCR2 and GPR17, are promiscuously operated by oxysterols making this class of ligands a 'fil rouge' linking oxidative stress, inflammation and neurodegeneration. Such a transversal role may represent a conserved, "unspecific" (but selective) signalling mode, by which emergency molecules activate multiple receptors involved in inflammatory/immune responses.