Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biomedicine and Pharmacotherapy, 3(66), p. 206-212, 2012

DOI: 10.1016/j.biopha.2011.09.014

Links

Tools

Export citation

Search in Google Scholar

Nicotine alters the ectonucleotidases activities in lymphocytes: In vitro and in vivo studies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of the present study was to investigate the effects in vivo and in vitro of nicotine, an important immunosuppressive agent, on NTPDase and ADA activities in lymphocytes of adult rats. The following nicotine doses in vivo study were evaluated: 0.0, 0.25 and 1.0mg/kg/day injected subcutaneously in rats for 10days. The activity of the enzymes were significantly decreased with nicotine 0.25 and 1mg/kg which inhibited ATP (22%, 54%), ADP (44%, 30%) hydrolysis and adenosine (43%, 34%) deamination, respectively. The expression of the protein NTPDase in rat lymphocytes was decreased to nicotine 1mg/kg and the lymphocytes count was decreased in both nicotine doses studied. The purine levels measured in serum of the rats treated with nicotine 0.25mg/kg significantly increased to ATP (39%), ADP (39%) and adenosine (303%). The nicotine exposure marker was determinate by level of cotinine level which significantly increased in rats treated with nicotine 0.25 (39%) and 1mg/kg (131%) when compared to rats that received only saline. The second set of study was in vitro assay which the ATP-ADP-adenosine hydrolysis were decreased by nicotine concentrations 1mM (0% - 0% - 16%, respectively), 5mM (42% - 32% - 74%, respectively), 10mM (80% - 27% - 80%, respectively) and 50mM (96% - 49% - 98%, respectively) when compared with the control group. We suggest that alterations in the activities of these enzymes may contribute to the understanding of the mechanisms involved in the suppression of immune response caused by nicotine.