Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Wireless Communications, 12(12), p. 6352-6370, 2013

DOI: 10.1109/twc.2013.103113.130470

Links

Tools

Export citation

Search in Google Scholar

Wireless Information and Power Transfer: Energy Efficiency Optimization in OFDMA Systems

Journal article published in 2013 by Derrick Wing Kwan Ng ORCID, Ernest S. Lo, Robert Schober
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper considers orthogonal frequency division multiple access (OFDMA) systems with simultaneous wireless information and power transfer. We study the resource allocation algorithm design for maximization of the energy efficiency of data transmission (bits/Joule delivered to the receivers). In particular, we focus on power splitting hybrid receivers which are able to split the received signals into two power streams for concurrent information decoding and energy harvesting. Two scenarios are investigated considering different power splitting abilities of the receivers. In the first scenario, we assume receivers which can split the received power into a continuous set of power streams with arbitrary power splitting ratios. In the second scenario, we examine receivers which can split the received power only into a discrete set of power streams with fixed power splitting ratios. For both scenarios, we formulate the corresponding algorithm design as a non-convex optimization problem which takes into account the circuit power consumption, the minimum data rate requirements of delay constrained services, the minimum required system data rate, and the minimum amount of power that has to be delivered to the receivers. By exploiting fractional programming and dual decomposition, suboptimal iterative resource allocation algorithms are developed to solve the non-convex problems. Simulation results illustrate that the proposed iterative resource allocation algorithms approach the optimal solution within a small number of iterations and unveil the trade-off between energy efficiency, system capacity, and wireless power transfer: (1) wireless power transfer enhances the system energy efficiency by harvesting energy in the radio frequency, especially in the interference limited regime; (2) the presence of multiple receivers is beneficial for the system capacity, but not necessarily for the system energy efficiency.