Published in

The Electrochemical Society, Journal of The Electrochemical Society, 7(159), p. A1005-A1012

DOI: 10.1149/2.050207jes

Links

Tools

Export citation

Search in Google Scholar

Correlation between Battery Performance and Lithium Ion Diffusion in Glyme-Lithium Bis(trifluoromethanesulfonyl)amide Equimolar Complexes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Li+ cation diffusion processes during electrochemical reactions in molten glyme-Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl) amide) equimolar complexes were explored in detail. The correlation between the Li+ limiting current density under one-dimensional finite-diffusion conditions and rate capability of [Li metal foil vertical bar electrolyte vertical bar porous LiCoO2 cathode sheet] electrochemical cells was explored. The diffusion processes in the vicinity of LiCoO2 single particles were also studied using a microelectrode technique. Electrochemical properties of the particles in the electrolytes were characterized by using micrometer-sized particles in contact with a metal microfilament encapsulated in a glass capillary, under conditions where the Li+ cations around the particles could have spherical diffusion profiles. A comparison of the electrochemical behaviors of the LiCoO2 sheet and the single-particle electrode in a typical organic electrolyte (LiClO4 dissolved in propylene carbonate), in a binary ionic liquid (Li[TFSA] dissolved in N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethanesulfonyl) amide), and in the molten complex ([Li(glyme)(1)][TFSA]) clearly revealed that the Li+ cation flux in the electrolytes dominates the rate capability of the cells using the porous LiCoO2 cathode sheet.