Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Oncogene, 36(19), p. 4134-4145, 2000

DOI: 10.1038/sj.onc.1203764

Links

Tools

Export citation

Search in Google Scholar

Blockade of Smad4 in transformed keratinocytes containing a Ras oncogene leads to hyperactivation of the Ras-dependent Erk signalling pathway associated with progression to undifferentiated carcinomas

Journal article published in 2000 by Maite Iglesias, Pilar Frontelo, Carlos Gamallo, Miguel Quintanilla ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Smad4 functions as a transcription factor in TGF-beta signalling. We have investigated the role of Smad4 in the TGF-beta1 cell responses of transformed PDV keratinocytes, which contain a Ras oncogene, and of non-tumorigenic MCA3D keratinocytes, by transfecting both cell lines with a dominant-negative Smad4 construct. Smad4 mediates TGF-beta1-induced up-regulation of p21Cip1 and growth arrest in MCA3D cells. However, in PDV keratinocytes, Smad4 is only partially involved in TGF-beta1-induced growth inhibition, and does not mediate enhancement of p21Cip1 levels by the growth factor. TGF-beta1 activates Ras/Erk signalling activity in both cell lines. PD098059, a specific inhibitor of MEK, disminishes TGF-beta1-induced p21Cip1 levels in PDV but not in MCA3D cells, suggesting an involvement of Erk in up-regulation of p21Cip1 by TGF-beta1 in PDV cells. PDV dominant-negative Smad4 cell transfectants, but not MCA3D transfectants, showed constitutive hyperactivation of the Ras/Erk signalling pathway, increased secretion of urokinase, higher motility properties, and a change to a fibroblastoid cell morphology associated in vivo with the transition from a well differentiated to a poorly differentiated tumour phenotype. Infection of MCA3D control and dominant negative Smad4 cell transfectants with retroviruses carrying a Ras oncogene led to enhanced p21Cip1 and urokinase secreted levels, independently of TGF-beta1 stimulation, that were reduced by PD098059. These results suggest that Smad4 acts inhibiting Ras-dependent Erk signalling activity in Ras-transformed keratinocytes. Loss of Smad4 function in these cells results in hyperactivation of Erk signalling and progression to undifferentiated carcinomas. Oncogene (2000) 19, 4134 - 4145