Published in

Elsevier, Journal of Materials Processing Technology, 14(210), p. 1986-1990

DOI: 10.1016/j.jmatprotec.2010.07.013

Links

Tools

Export citation

Search in Google Scholar

Preparation of in situ-formed WC/Fe composite on gray cast iron substrate by a centrifugal casting process

Journal article published in 2010 by Libin Niu, Mirabbos Hojamberdiev ORCID, Yunhua Xu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An iron-based composite reinforced by in situ-formed tungsten carbide particles was fabricated on gray cast iron substrate by a centrifugal casting process. The as-prepared composite was characterized by X-ray diffraction, scanning electron microscopy, and microhardness and wear testers. An appropriate pouring temperature (1300 °C) of the gray cast iron melt was chosen considering the dissolution temperature of the tungsten wires determined by differential scanning calorimetry. The experimental results showed that the tungsten wires were dissolved partially by the cast iron melt. As a result, primary and secondary tungsten carbide particles and pearlite with a negligible amount of graphite flakes were formed as the reinforcing phase and the matrix, respectively. The composite with a thickness of about 3 mm was dense and metallurgically bonded to the gray cast iron substrate. Wear resistance was determined by a pin-on-disc wear test technique, indicating that the composite containing high volume fraction of hard tungsten carbides presented higher wear resistance compared with the unreinforced gray cast iron.