Dissemin is shutting down on January 1st, 2025

Published in

Wiley, BioFactors, 3(40), p. 327-335, 2013

DOI: 10.1002/biof.1152

Links

Tools

Export citation

Search in Google Scholar

Absorption, metabolism, and excretion of fermented orange juice (poly)phenols in rats

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two milliliters of a fermented, pasteurized orange juice containing ∼1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage after which plasma and urine collected over a 36 h period were analyzed by UHPLC-mass spectrometry. The main constituents in the juice were hesperetin and naringenin-O-glycosides, apigenin-6,8-C-diglucoside, and ferulic acid-4'-O-glucoside. Plasma contained seven flavanone glucuronides, with the principal metabolites, naringenin-7-O-glucuronide, naringenin-4'-O-glucuronide, and an isosakuranetin-O-glucuronide, peaking 6 h after intake at concentrations of ∼10 nmol/L. Urinary excretion of four hesperetin glucuronides was equivalent to 0.28% of intake while that of the two naringenin glucuronides was 2.8% of intake. The plasma and urine data suggest that while some absorption occurred in the small intestine, the main site of uptake was the colon. Urine also contained dihydroferulic acid-4'-O-glucuronide and dihydroferulic acid-4'-O-sulfate which were excreted in quantities corresponding to 48.2% of the ingested ferulic acid-4'-glucoside. This indicates that the hydroxycinnamate is much more bioavailable than the flavanones in the rat model. Conversion of the ferulic acid glucoside to the dihydroferulic acid metabolites involves the action of colonic microbial glycosidases and reductases/hydrogenases followed by postabsorption phase II metabolism before renal excretion. © 2013 BioFactors, 2013.