Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 1(107), p. 297-301, 2009

DOI: 10.1073/pnas.0912952107

Links

Tools

Export citation

Search in Google Scholar

Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Blood coagulation in humans requires the activity of vitamin K epoxide reductase (VKOR), the target of the anticoagulant warfarin (Coumadin). Bacterial homologs of VKOR were recently found to participate in a pathway leading to disulfide bond formation in secreted proteins of many bacteria. Here we show that the VKOR homolog from the bacterium Mycobacterium tuberculosis , the causative agent of human tuberculosis, is inhibited by warfarin and that warfarin-resistant mutations of mycobacterial VKOR appear in similar locations to mutations found in human patients who require higher doses of warfarin. Deletion of VKOR results in a severe growth defect in mycobacteria, and the growth of M. tuberculosis is inhibited by warfarin. The bacterial VKOR homolog may represent a target for antibiotics and a model for genetic studies of human VKOR. We present a simple assay in Escherichia coli , based on a disulfide-sensitive β-galactosidase, which can be used to screen for stronger inhibitors of the M. tuberculosis VKOR homolog.