Published in

Nature Research, Nature Communications, 1(5), 2014

DOI: 10.1038/ncomms4987

Links

Tools

Export citation

Search in Google Scholar

Combinatorial flexibility of cytokine function during human T helper cell differentiation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In an inflammatory microenvironment, multiple cytokines may act on the same target cell, creating the possibility for combinatorial interactions. How these may influence the system-level function of a given cytokine is unknown. Here we show that a single cytokine, interferon (IFN)-alpha, can generate multiple transcriptional signatures, including distinct functional modules of variable flexibility, when acting in four cytokine environments driving distinct T helper cell differentiation programs (Th0, Th1, Th2 and Th17). We provide experimental validation of a chemokine, cytokine and antiviral modules differentially induced by IFN-α in Th1, Th2 and Th17 environments. Functional impact is demonstrated for the antiviral response, with a lesser IFN-α-induced protection to HIV-1 and HIV-2 infection in a Th17 context. Our results reveal that a single cytokine can induce multiple transcriptional and functional programs in different microenvironments. This combinatorial flexibility creates a previously unrecognized diversity of responses, with potential impact on disease physiopathology and cytokine therapy.