Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Human Reproduction, 6(14), p. 1549-1554

DOI: 10.1093/humrep/14.6.1549

Links

Tools

Export citation

Search in Google Scholar

Morphology and functional characteristics of human ovarian microvascular endothelium.

Journal article published in 1999 by F. W. Anthony, K. E. Ratcliffe, M. C. Richardson, R. W. Stones ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Corpus luteum formation is characterized by a period of extensive vascularization, as capillaries in the thecal layer of the collapsed follicle following ovulation invade the previously avascular granulosa layer. In order to study these processes in vitro we have developed an endothelial cell preparation from the specific microvasculature of the ovarian follicle. Follicular aspirates, obtained at oocyte collection for in-vitro fertilization (IVF), were filtered to obtain fragments of follicle wall. These were set in Matrigel and then cultured allowing the growth of capillary-like structures through the matrix. Upon emergence from the Matrigel the growing cells formed monolayers with the characteristic cobble-stone morphology of endothelial cells. Immunocytochemistry demonstrated the presence of a range of endothelial-specific markers including von Willebrand factor (vWF), Ulex europeus agglutinin (UEA)-1, CD31 and E-selectin, as well as VCAM-1, which is normally associated with stimulated endothelial cells. RT-PCR analysis showed the expression of two receptors for vascular endothelial growth factor (flt-1 and KDR), and the endothelial nitric oxide synthase, adding further evidence of their identity as human ovarian microvascular endothelial cells (HOMEC). Thus, the novel preparative procedure described now allows the generation of HOMEC cultures from readily available material resulting from IVF procedures.