Published in

American Physical Society, Physical Review B (Condensed Matter), 6(59), p. 4080-4090, 1999

DOI: 10.1103/physrevb.59.4080

Links

Tools

Export citation

Search in Google Scholar

Smoothed universal correlations in the two-dimensional Anderson model

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report on calculations of smoothed spectral correlations in the two-dimensional Anderson model for weak disorder. As pointed out in (M. Wilkinson, J. Phys. A: Math. Gen. 21, 1173 (1988)), an analysis of the smoothing dependence of the correlation functions provides a sensitive means of establishing consistency with random matrix theory. We use a semiclassical approach to describe these fluctuations and offer a detailed comparison between numerical and analytical calculations for an exhaustive set of two-point correlation functions. We consider parametric correlation functions with an external Aharonov-Bohm flux as a parameter and discuss two cases, namely broken time-reversal invariance and partial breaking of time-reversal invariance. Three types of correlation functions are considered: density-of-states, velocity and matrix element correlation functions. For the values of smoothing parameter close to the mean level spacing the semiclassical expressions and the numerical results agree quite well in the whole range of the magnetic flux. Comment: 12 pages, 14 figures submitted to Phys. Rev. B