Full text: Download
The eukaryotic cytoskeletal protein tubulin is a heterodimer of two subunits, alpha and beta, and is a building block unit of microtubules. In a previous communication we demonstrated that tubulin possesses chaperone-like activities by preventing the stress-induced aggregation of various proteins (Guha, S., Manna, T. K., Das, K. P., and Bhattacharyya, B. (1998) J. Biol. Chem. 273, 30077-30080). As an extension of this observation, we explored whether tubulin, like other known chaperones, also protected biological activity of proteins against thermal stress or increased the yields of active proteins during refolding from a denatured state. We show here that tubulin not only prevents the thermal aggregation of alcohol dehydrogenase and malic dehydrogenase but also protects them from loss of activity. We also show that tubulin prevents the aggregation of substrates during their refolding from a denatured state and forms a stable complex with denatured substrate. The activity of malic dehydrogenase, alpha-glucosidase, and lactate dehydrogenase during their refolding from urea or guanidium hydrochloride denatured states increased significantly in presence of tubulin compared with that without tubulin. These results suggest that tubulin, in addition to its role in mitosis, cell motility, and other cellular events, might be implicated in protein folding and protection from stress.