Published in

Elsevier, Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 1(154), p. 44-55, 2009

DOI: 10.1016/j.cbpa.2009.04.624

Links

Tools

Export citation

Search in Google Scholar

Hemolymph ionic regulation and adjustments in gill (Na+, K+)-ATPase activity during salinity acclimation in the swimming crab Callinectes ornatus (Decapoda, Brachyura)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na+, K+)-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 per thousand or 33 per thousand salinity. C. ornatus is isosmotic after acclimation to 21 per thousand but is hyposmotic at 33 per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH4+ modulates enzyme affinity for K+, which increases 187-fold in crabs acclimated to 33 per thousand salinity. The (Na+, K+)-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 per thousand), with little change in KM values (approximately 50 micromol L(-1)). K+ together with NH4+ synergistically stimulated activity to maximum rates of approximately 240 nmol Pi min(-1) mg(-1). KI values for ouabain inhibition (approximately 110 micromol L(-1)) decreased to 44.9 +/- 1.0 micromol L(-1) (21 per thousand) and 28.8 +/- 1.3 micromol L(-1) (33 per thousand) in the presence of both K+ and NH4+. Assays employing various inhibitors suggest the presence of mitochondrial F0F1-, and K+- and V-ATPase activities in the gill microsomes.