Published in

Elsevier, Biophysical Journal, 1(67), p. 161-171, 1994

DOI: 10.1016/s0006-3495(94)80465-5

Links

Tools

Export citation

Search in Google Scholar

Gating of cardiac Na+ channels in excised membrane patches after modification by alpha-chymotrypsin.

Journal article published in 1994 by C. Valenzuela ORCID, P. B. Bennett
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Single cardiac Na+ channels were investigated after intracellular proteolysis to remove the fast inactivation process in an attempt to elucidate the mechanisms of channel gating and the role of slow inactivation. Na+ channels were studied in inside-out patches excised from guinea-pig ventricular myocytes both before and after very brief exposure (2-4 min) to the endopeptidase, alpha-chymotrypsin. Enzyme exposure times were chosen to maximize removal of fast inactivation and to minimize potential nonspecific damage to the channel. After proteolysis, the single channel current-voltage relationship was approximately linear with a slope conductance of 18 +/- 2.5 pS. Na+ channel reversal potentials measured before and after proteolysis by alpha-chymotrypsin were not changed. The unitary current amplitude was not altered after channel modification suggesting little or no effect on channel conductance. Channel open times were increased after removal of fast inactivation and were voltage-dependent, ranging between 0.7 (-70 mV) and 3.2 (-10 mV) ms. Open times increased with membrane potential reaching a maximum at -10 mV; at more positive membrane potentials, open times decreased again. Fast inactivation appeared to be completely removed by alpha-chymotrypsin and slow inactivation became more apparent suggesting that fast and slow inactivation normally compete, and that fast inactivation dominates in unmodified channels. This finding is not consistent with a slow inactivated state that can only be entered through the fast inactivated state, since removal of fast inactivation does not eliminate slow inactivation. The data indicate that cardiac Na+ channels can enter the slow inactivated state by a pathway that bypasses the fast inactivated state and that the likelihood of entering the slow inactivated state increases after removal of fast inactivation.