Published in

Hindawi, International Journal of Dentistry, (2013), p. 1-8, 2013

DOI: 10.1155/2013/769768

Links

Tools

Export citation

Search in Google Scholar

Characteristics of 2 Different Commercially Available Implants with or without Nanotopography

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of this study was to assess histologically and histomorphometrically the early bone forming properties after 3 weeks for 2 commercially available implants, one supposedly possessing nanotopography and one without, in a rabbit femur model. Twenty-four implants divided equally into 2 groups were utilized in this study. The first group (P-I MICRO+NANO) was a titanium oxide (TiO2) microblasted and noble gas ion bombarded surface while the second group (Ospol) was anodic oxidized surface with calcium and phosphate incorporation. The implants were placed in the rabbit femur unicortically and were allowed to heal for 3 weeks. After euthanasia, the samples were subjected to histologic sectioning and bone-implant contact and bone area were evaluated histomorphometrically under an optical microscope. The histomorphometric evaluation presented that the P-I MICRO+NANO implants demonstrated significantly higher new bone formation as compared to the Ospol implants. Within the limitations of this study, the results suggested that nanostructures presented significantly higher bone formation after 3 weeksin vivo, and the effect of chemistry was limited, which is indicative that nanotopography is effective at early healing periods.