Published in

Rockefeller University Press, Journal of Cell Biology, 6(142), p. 1461-1471, 1998

DOI: 10.1083/jcb.142.6.1461

Links

Tools

Export citation

Search in Google Scholar

Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Limb-girdle muscular dystrophy type 2D (LGMD 2D) is an autosomal recessive disorder caused by mutations in the alpha-sarcoglycan gene. To determine how alpha-sarcoglycan deficiency leads to muscle fiber degeneration, we generated and analyzed alpha-sarcoglycan- deficient mice. Sgca-null mice developed progressive muscular dystrophy and, in contrast to other animal models for muscular dystrophy, showed ongoing muscle necrosis with age, a hallmark of the human disease. Sgca-null mice also revealed loss of sarcolemmal integrity, elevated serum levels of muscle enzymes, increased muscle masses, and changes in the generation of absolute force. Molecular analysis of Sgca-null mice demonstrated that the absence of alpha-sarcoglycan resulted in the complete loss of the sarcoglycan complex, sarcospan, and a disruption of alpha-dystroglycan association with membranes. In contrast, no change in the expression of epsilon-sarcoglycan (alpha-sarcoglycan homologue) was observed. Recombinant alpha-sarcoglycan adenovirus injection into Sgca-deficient muscles restored the sarcoglycan complex and sarcospan to the membrane. We propose that the sarcoglycan-sarcospan complex is requisite for stable association of alpha-dystroglycan with the sarcolemma. The Sgca-deficient mice will be a valuable model for elucidating the pathogenesis of sarcoglycan deficient limb-girdle muscular dystrophies and for the development of therapeutic strategies for this disease.