Elsevier, Remote Sensing of Environment, 5(115), p. 1171-1187
DOI: 10.1016/j.rse.2011.01.001
Full text: Download
Land surface and climate modelling requires continuous and consistent Leaf Area Index (LAI). High spatiotemporal resolution and long-time record data are more in demand nowadays and will continue to be in the future. MODIS LAI products meet these requirements to some degree. However, due to the presence of cloud and seasonal snow cover, the instrument problems and the uncertainties of retrieval algorithm, the current MODIS LAI products are spatially and temporally discontinuous and inconsistent, which limits their application in land surface and climate modelling. To improve the MODIS LAI products on a global scale, we considered the characteristics of the MODIS LAI data and made the best use of quality control (QC) information, and developed an integrated two-step method to derive the improved MODIS LAI products effectively and efficiently on a global scale. First, we used the modified temporal spatial filter (mTSF) method taking advantage of background values and QC information at each pixel to do a simple data assimilation for relatively low quality data. Then we applied the post processing-TIMESAT (A software package to analyze time-series of satellite sensor data) Savitzky–Golay (SG) filter to get the final result. We implemented the method to 10years of the MODIS Collection 5 LAI data. In comparison with the LAI reference maps and the MODIS LAI data, our results showed that the improved MODIS LAI data are closer to the LAI reference maps in magnitude and also more continuous and consistent in both time-series and spatial domains. In addition, simple statistics were used to evaluate the differences between the MODIS LAI and the improved MODIS LAI.