Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 41(112), p. 13059-13063, 2008

DOI: 10.1021/jp804856z

Links

Tools

Export citation

Search in Google Scholar

Quantum chemical calculations of the redox potential of the Pu(VII)/Pu(VIII) couple

Journal article published in 2008 by Satoru Tsushima ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The redox potential of the Pu(VII)/Pu(VIII) couple was studied by density functional theory calculations. The spin-orbit effect was corrected at the CASSCF level. The redox potential (relative to the standard hydrogen potential) of the Pu(VII)/Pu(VIII) couple in alkaline solution was found to vary from 4.36 to 1.06 V depending on the number of Pu-O oxo bonds, coordination numbers, and coordination modes. The redox potential drops substantially as the number of Pu-O oxo bonds increases. Pu(VIII) may be synthesized in strong alkaline solution assuming that both Pu(VII) and Pu(VIII) exist in penta-oxo form, Pu (VII)O 5OH (4-) and Pu (VIII)O 5OH (3-), respectively. The Mulliken population of Pu in Pu(VII) and Pu(VIII) complexes are very similar, suggesting that the spin-orbit effect is rather small in Pu(VII) complexes and that when Pu(VII) is oxidized to Pu(VIII) the electron is stripped mainly from the ligand. Consequently, Pu(VIII) is in an unstable oxidation state and easily reduced back to Pu(VII) by the solvent water molecules. In acidic medium, the Pu(VII)/Pu(VIII) redox potential is too high to get the Pu(VIII) valence state.