Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Applied Ocean Research, (52), p. 73-79, 2015

DOI: 10.1016/j.apor.2015.04.010

Links

Tools

Export citation

Search in Google Scholar

Scour depth under pipelines placed on weakly cohesive soils

Journal article published in 2015 by Matteo Postacchini ORCID, Maurizio Brocchini
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We here study the scouring processes that evolve around a submarine pipeline placed on a weakly cohesive seabed. We first analyze some laboratory tests carried out by Vijaya Kumar et al. [21], Xu et al. [25] and Zhou et al. [28] that focused on the scouring around a horizontal cylinder lying on a cohesive bed, subject to waves and currents. The specific purpose is that of finding a new formula for the prediction of the equilibrium scour depth under submarine pipelines. After a theoretical analysis of the main parameters, the sought formula has been found to be a function of: (i) the hydrodynamic forces acting on the cylinder (through the Keulegan-Carpenter parameter KC), (ii) the clay content of the soil C-c, and (iii) the burial depth eo ID. In the presence of small amounts of clay (C-c< 5%), the scour depth depends directly on KC (as confirmed by many literature works for pipelines lying on sandy soils, e.g.[18]) and inversely on C-c (as already seen for bridge abutments on cohesive soils, e.g. [1]), the best-fit law being characterized by a coefficient of determination R-2 = 0.62. If some burial depth is accounted for, this being a novelty of the present work, a more general formulation can be used, valid in the presence of weakly-cohesive soils and with burial depths of the pipe smaller than 0.5 (R-2 = 0.79). For large clay-content ranges (2%