Published in

Elsevier, Bioresource Technology, 21(101), p. 8171-8178

DOI: 10.1016/j.biortech.2010.06.026

Links

Tools

Export citation

Search in Google Scholar

Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST)

Journal article published in 2010 by Mingjie Jin ORCID, Ming W. Lau, Venkatesh Balan, Bruce E. Dale
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It is well known that simultaneous saccharification and co-fermentation (SSCF) reduces cellulosic ethanol production cost compared to separate hydrolysis and fermentation (SHF). However, the traditional SSCF process of converting Ammonia Fiber Expansion (AFEX) pretreated switchgrass to ethanol using both commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST) gave reduced ethanol yield due to lower xylose consumption. To overcome this problem we have developed a two-step SSCF process, in which xylan was hydrolyzed and fermented first followed by the hydrolysis and fermentation of glucan. Important parameters, such as temperature, cellulases loading during xylan hydrolysis and fermentation, initial OD(600) for inoculation of S. cerevisiae 424A(LNH-ST), and pH, were studied for best performance. Compared with traditional SSCF, the two-step SSCF showed higher xylose consumption and higher ethanol yield. The sugar conversion was also enhanced from 70% by enzymatic hydrolysis to 82% by two-step SSCF. One important finding is that the residue from enzymatic hydrolysis plays a significant role in reducing xylose consumption and ethanol metabolic yield during SSCF.