Published in

American Association of Immunologists, The Journal of Immunology, 9(176), p. 5213-5222, 2006

DOI: 10.4049/jimmunol.176.9.5213

Links

Tools

Export citation

Search in Google Scholar

Immunological and Antitumor Effects of IL-23 as a Cancer Vaccine Adjuvant

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The promising, but modest, clinical results of many human cancer vaccines indicate a need for vaccine adjuvants that can increase both the quantity and the quality of vaccine-induced, tumor-specific T cells. In this study we tested the immunological and antitumor effects of the proinflammatory cytokine, IL-23, in gp100 peptide vaccine therapy of established murine melanoma. Neither systemic nor local IL-23 alone had any impact on tumor growth or tumor-specific T cell numbers. Upon specific vaccination, however, systemic IL-23 greatly increased the relative and absolute numbers of vaccine-induced CD8(+) T cells and enhanced their effector function at the tumor site. Although IL-23 specifically increased IFN-gamma production by tumor-specific T cells, IFN-gamma itself was not a primary mediator of the vaccine adjuvant effect. The IL-23-induced antitumor effect and accompanying reversible weight loss were both partially mediated by TNF-alpha. In contrast, local expression of IL-23 at the tumor site maintained antitumor activity in the absence of weight loss. Under these conditions, it was also clear that enhanced effector function of vaccine-induced CD8(+) T cells, rather than increased T cell number, is a primary mechanism underlying the antitumor effect of IL-23. Collectively, these results suggest that IL-23 is a potent vaccine adjuvant for the induction of therapeutic, tumor-specific CD8(+) T cell responses.