Published in

Wiley, The Journal of Physiology, 22(589), p. 5517-5528, 2011

DOI: 10.1113/jphysiol.2011.216341

Links

Tools

Export citation

Search in Google Scholar

Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.