Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), FEMS Immunology and Medical Microbiology, 1(48), p. 140-147, 2006

DOI: 10.1111/j.1574-695x.2006.00136.x

Links

Tools

Export citation

Search in Google Scholar

Adenylate cyclase influences filamentous haemagglutinin-mediated attachment ofBordetella pertussisto epithelial alveolar cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Attachment to epithelial cells in the respiratory tract is a key event in Bordetella pertussis colonization. Filamentous haemagglutinin (FHA) is an important virulence factor mediating adhesion to host cells. In this study, the relevance of the interaction between FHA and adenylate cyclase toxin (ACT) during bacterial attachment was investigated. Mutants lacking either FHA or ACT showed significantly decreased adherence to epithelial respiratory cells. The use of several ACT-specific monoclonal antibodies and antiserum showed that the decrease in attachment of strains lacking ACT expression could not be explained by the adhesin-like activity of ACT, or a change of any of the biological activities of ACT. Immunoblot analysis showed that the lack of ACT expression did not interfere with FHA localization. An heparin-inhibitable carbohydrate-binding site is crucial in the process of FHA-mediated bacterial binding to epithelial cells. In the presence of heparin attachment of wild-type B. pertussis, but not of the isogenic ACT defective mutant, to epithelial cells was significantly decreased. These results suggest that ACT enhances the adhesive functions of FHA, and modifies the performance of the FHA heparin-inhibitable carbohydrate binding site. We propose that the presence of ACT in the outer membrane of B. pertussis to play a role in the functionality of FHA.