Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review B (Condensed Matter), 13(66)

DOI: 10.1103/physrevb.66.134428

Links

Tools

Export citation

Search in Google Scholar

Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys

Journal article published in 2002 by I. Galanakis ORCID, P. H. Dederichs, N. Papanikolaou
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We study the origin of the gap and the role of chemical composition in the half-ferromagnetic Heusler alloys using the full-potential screened KKR method. In the paramagnetic phase the C1_b compounds, like NiMnSb, present a gap. Systems with 18 valence electrons, Z_t, per unit cell, like CoTiSb, are semiconductors, but when Z_t > 18 antibonding states are also populated, thus the paramagnetic phase becomes unstable and the half-ferromagnetic one is stabilized. The minority occupied bands accommodate a total of nine electrons and the total magnetic moment per unit cell in mu_B is just the difference between Z_t and $2 \times 9$. While the substitution of the transition metal atoms may preserve the half-ferromagnetic character, substituting the $sp$ atom results in a practically rigid shift of the bands and the loss of half-metallicity. Finally we show that expanding or contracting the lattice parameter by 2% preserves the minority-spin gap. Comment: 11 pages, 7 figures New figures, revised text