Published in

Cell Press, Cancer Cell, 4(27), p. 516-532, 2015

DOI: 10.1016/j.ccell.2015.03.006

Cell Press, Cancer Cell, 5(27), p. 744, 2015

DOI: 10.1016/j.ccell.2015.04.014

Links

Tools

Export citation

Search in Google Scholar

Convergent Mutations and Kinase Fusions Lead to Oncogenic STAT3 Activation in Anaplastic Large Cell Lymphoma

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 155 ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.