Published in

Springer, MRS Bulletin, 12(40), p. 1019-1034, 2015

DOI: 10.1557/mrs.2015.271

Links

Tools

Export citation

Search in Google Scholar

Materials characterization and the evolution of materials

Journal article published in 2015 by J. O. Cross, R. L. Opila, I. W. Boyd ORCID, E. N. Kaufmann
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The materials characterization universe is as large and multifaceted as the materials and engineering fields combined. Many methods have evolved over decades, or even centuries, from quite rudimentary tools to extremely sophisticated instruments. Measurement and testing of materials span properties from mechanical, to electrical, to thermal; materials classes from metals, to semiconductors, to insulators, with ceramics, polymers, and composites somewhere in between; scales from atomic through nano-, micro-, meso-, and macroscopic; and times spanning picoseconds to years in practice, to eons in simulation. The technical context of a materials measurement ranges from fundamental science, often with no immediately transparent connection, to future engineering applications, to quite practical real-world field tests that can predict performance and - one hopes - prevent component failure. Materials measurement methods have grown out of distinct disciplinary homes: physics, chemistry, metallurgy, and, more recently, biology and environmental science. Drawing from the broad expanse of materials characterization techniques, we offer a perspective on that breadth and cite examples that are illustrative of the crucial role such techniques have played and are playing in the technologies of today.