Published in

American Physical Society, Physical Review Letters, 2(96)

DOI: 10.1103/physrevlett.96.027401

Links

Tools

Export citation

Search in Google Scholar

Ultrafast Dynamics of Delocalized and Localized Electrons in Carbon Nanotubes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report on the dynamics of the dielectric function of single-wall carbon nanotubes in the 10-30 THz frequency range after ultrafast laser excitation. The absence of a distinct free-carrier response is attributed to the photogeneration of strongly bound excitons in the tubes with large energy gaps. We find a feature of enhanced transmission caused by the blocking of optical transitions in small-gap tubes. The rapid decay of a featureless background with pronounced dichroism is associated with the increased absorption of spatially localized charge carriers before thermalization is completed.