Published in

Elsevier, Industrial Crops and Products, (70), p. 253-259, 2015

DOI: 10.1016/j.indcrop.2015.03.062

Links

Tools

Export citation

Search in Google Scholar

Influence of nitrogen and sulfur application on camelina performance under dryland conditions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

There has been recent interest in camelina (Camelina sativa L.) because of its potential as a low-cost feedstock for biofuels and hence the need to optimize its production. We hypothesized that nutrient requirements under dryland environments with low and highly variable precipitation will depend on year and timely seeding. This study aimed at determining (a) the effects of nitrogen (N) and sulfur (S) application on the growth, yield, seed protein and oil content of spring-type camelina for the environmental conditions of northern Wyoming, USA, and (b) N and S requirement when camelina is seeded late. Four N levels (0, 28, 56, and 112 kg ha−1) and two S levels (0 and 25 kg ha−1) were studied. Sulfur had no significant effects on the measured responses. For trials established on May 13, 2013 and April 11, 2014, there was a general increase in plant height, seed yield, protein content, and protein yield with N application. Nitrogen application resulted in 31% seed yield increase but decreased oil content by 2.7% relative to the unfertilized control. As such, biodiesel that could be produced increased with N application. When seeded in May 24, 2014, N application caused a significant increase in the plant height, seed yield, harvest index and estimated biodiesel, but had no effect on the oil and protein content. The application of N showed a quadratic response to seed yield in all the trials. In general, applying N rate beyond 56 kg ha−1 did not result in significant increase in seed yield for trials established in May 13, 2013 and April 11, 2014, and 28 kg ha−1 for the trial established in May 24, 2014.