Published in

Elsevier, Water Research, 19(40), p. 3517-3526, 2006

DOI: 10.1016/j.watres.2006.08.005

Links

Tools

Export citation

Search in Google Scholar

Enhanced biodegradation of mixed phenol and sodium salicylate by Pseudomonas putida in membrane contactors

Journal article published in 2006 by Ruey-Shin Juang ORCID, Shang-Yuan Tsai
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A polypropylene (PP) hollow fiber membrane contactor was used as a reactor to enhance the biodegradation of equimolar phenol and sodium salicylate (SA) by Pseudomonas putida CCRC 14365 at 30 degrees C and pH 7. Experiments were performed at a fixed initial cell density of 0.025 g/L and in the total substrate level range 5.32-63.8 mM. The degradation experiments by free cells were also studied for comparison. With pristine hydrophobic fibers, the degradation of SA was started only after phenol was completely consumed. Substrate inhibitory effect was avoided due to sufficiently low substrate levels in the cell medium; however, the biodegradation was time consuming. With ethanol-wetted fibers, both substrates were completely degraded much faster than the use of pristine fibers. Although the wetted fibers were unable to prevent movement of substrates through the pores, biofilm formed on the outer surfaces of the fibers could enhance the tolerance limit of substrate toxicity. This greatly extended the treatment range to high-level substrate mixtures, as long as the water was nearly neutral and free of concentrated inorganic salts.