Published in

Elsevier, Phytomedicine, 6(13), p. 442-445

DOI: 10.1016/j.phymed.2005.01.014

Links

Tools

Export citation

Search in Google Scholar

Vascular effects of 7-epiclusianone, a prenylated benzophenone from Rheedia gardneriana, on the rat aorta

Journal article published in 2006 by Cruz Aj, A. J. Cruz, V. S. Lemos, M. H. dos Santos, T. J. Nagem, S. F. Cortes ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The vascular effects of 7-epiclusianone on the rat aorta were investigated. In the rat aortic rings with functional endothelia, 7-epiclusianone up to 10microM induced a concentration-dependent vasodilatation of the sustained contractions induced by phenylephrine (0.3microM). At concentrations higher than 10microM, 7-epiclusianone induced a concentration-dependent contraction in the aortic rings. The vasodilator effect of 7-epiclusianone was drastically decreased with L-NAME (100microM) as well as in endothelium-denuded aortic rings. Moreover, indomethacin (10microM) induced a significant shift to the left in the vasodilator but did not modify the vasoconstrictor effect of 7-epiclusianone. In arteries without pre-contraction, 7-epiclusianone (3-100microM) induced concentration-dependent contraction only in endothelium-intact and in the presence of L-NAME (100microM). This effect was inhibited by indomethacin (10microM) and ZM230487 (1microM), selective inhibitors of cyclooxygenase and of 5-lipoxygenase, respectively. We can conclude that at low concentrations 7-epiclusianone induces an endothelium-dependent vasodilator effect in rat aortic rings. At higher concentrations and in conditions where NO synthase was inhibited, 7-epiclusianone induces a vasocontractile effect. Nitric oxide seems to participate in the vasodilatation, while endothelial cyclooxygenase- and 5-lipoxygenase-derived products play a role in the vasoconstrictor effect.