Published in

Nature Research, Nature Genetics, 2(39), p. 251-258, 2007

DOI: 10.1038/ng1949

Links

Tools

Export citation

Search in Google Scholar

Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In mammalian males, the first meiotic prophase is characterized by formation of a separate chromatin domain called the sex body. In this domain, the X and Y chromosomes are partially synapsed and transcriptionally silenced, a process termed meiotic sex-chromosome inactivation (MSCI). Likewise, unsynapsed autosomal chromatin present during pachytene is also silenced (meiotic silencing of unsynapsed chromatin, MSUC). Although it is known that MSCI and MSUC are both dependent on histone H2A.X phosphorylation mediated by the kinase ATR, and cause repressive H3 Lys9 dimethylation, the mechanisms underlying silencing are largely unidentified. Here, we demonstrate an extensive replacement of nucleosomes within unsynapsed chromatin, depending on and initiated shortly after induction of MSCI and MSUC. Nucleosomal eviction results in the exclusive incorporation of the H3.3 variant, which to date has primarily been associated with transcriptional activity. Nucleosomal exchange causes loss and subsequent selective reacquisition of specific histone modifications. This process therefore provides a means for epigenetic reprogramming of sex chromatin presumably required for gene silencing in the male mammalian germ line.