Published in

American Chemical Society, Industrial & Engineering Chemistry Research, 1(54), p. 307-317, 2014

DOI: 10.1021/ie5029123

Links

Tools

Export citation

Search in Google Scholar

Semi-Infinite Optimization with Implicit Functions

Journal article published in 2014 by Matthew D. Stuber ORCID, Paul I. Barton
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, equality-constrained bilevel optimization problems, arising from engineering design, economics, and operations research problems, are reformulated as an equivalent semi-infinite program (SIP) with implicit functions embedded, which are defined by the original equality constraints that model the system. Using recently developed theoretical tools for bounding implicit functions, a recently developed algorithm for global optimization of implicit functions, and a recently developed algorithm for solving standard SIPs with explicit functions to global optimality, a method for solving SIPs with implicit functions embedded is presented. The method is guaranteed to converge to ϵ-optimality in finitely many iterations given the existence of a Slater point arbitrarily close to a minimizer. Besides the Slater point assumption, it is assumed only that the functions are continuous and factorable and that the model equations are once continuously differentiable.