Published in

American Chemical Society, Journal of Physical Chemistry C, 37(118), p. 21589-21598, 2014

DOI: 10.1021/jp503319s

Links

Tools

Export citation

Search in Google Scholar

Facet Selectivity of Ligands on Silver Nanoplates: Molecular Mechanics Study

Journal article published in 2014 by Zhiye Tang, Qiao Zhang ORCID, Yadong Yin ORCID, Chia-En A. Chang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Colloidal nanomaterials with well-defined shapes have wide applications in many fields. However, the exact role of capping ligands, which often dictates the shape of products in colloidal syntheses, is often unclear. Here we use a classical molecular-mechanics force-field method, mining minima (M2), to compute the binding free energy of the ligands such as citrate, monocarboxylates, dicarboxylates, and tricarboxylates to both (111) and (100) facets of silver and to investigate the mechanisms of the anisotropic growth of silver nanoplates. The distribution of partial charges on a ligand, the geometry complementation in the complex, and the entropic penalty on binding played crucial roles in discriminating the two facets and determining a good or poor ligand. Our finding allows rational design of capping ligands that may perform as well as citrate in promoting the anisotropic growth of nanoplates; however, designing a compound that outperforms citrate is found to be challenging.