Dissemin is shutting down on January 1st, 2025

Published in

The Royal Society, Proceedings of the Royal Society B: Biological Sciences, 1554(271), p. 2275-2282, 2004

DOI: 10.1098/rspb.2004.2833

Links

Tools

Export citation

Search in Google Scholar

Reduced fecundity is the cost of cheating in RNA virusϕ6

Journal article published in 2004 by J. J. Dennehy ORCID, P. E. Turner
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Co-infection by multiple viruses affords opportunities for the evolution of cheating strategies to use intracellular resources. Cheating may be costly, however, when viruses infect cells alone. We previously allowed the RNA bacteriophage phi6 to evolve for 250 generations in replicated environments allowing co-infection of Pseudomonas phaseolicola bacteria. Derived genotypes showed great capacity to compete during co-infection, but suffered reduced performance in solo infections. Thus, the evolved viruses appear to be cheaters that sacrifice between-host fitness for within-host fitness. It is unknown, however, which stage of the lytic growth cycle is linked to the cost of cheating. Here, we examine the cost through burst assays, where lytic infection can be separated into three discrete phases (analogous to phage life history): dispersal stage, latent period (juvenile stage), and burst (adult stage). We compared growth of a representative cheater and its ancestor in environments where the cost occurs. The cost of cheating was shown to be reduced fecundity, because cheaters feature a significantly smaller burst size (progeny produced per infected cell) when infecting on their own. Interestingly, latent period (average burst time) of the evolved virus was much longer than that of the ancestor, indicating the cost does not follow a life history trade-off between timing of reproduction and lifetime fecundity. Our data suggest that interference competition allows high fitness of derived cheaters in mixed infections, and we discuss preferential encapsidation as one possible mechanism.