Published in

Springer, Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology, 5(177), p. 519-528, 2007

DOI: 10.1007/s00360-007-0150-y

Links

Tools

Export citation

Search in Google Scholar

Unidirectional Na+ and Ca2+ fluxes in two euryhaline teleost fishes, Fundulus heteroclitus and Oncorhynchus mykiss, acutely submitted to a progressive salinity increase

Journal article published in 2007 by Viviane Prodocimo ORCID, Fernando Galvez, Carolina A. Freire, Chris M. Wood
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Na(+) and Ca(2+) regulation were compared in two euryhaline species, killifish (normally estuarine-resident) and rainbow trout (normally freshwater-resident) during an incremental salinity increase. Whole-body unidirectional fluxes of Na(+) and Ca(2+), whole body Na(+) and Ca(2+), and plasma concentrations (trout only), were measured over 1-h periods throughout a total 6-h protocol of increasing salinity meant to simulate a natural tidal flow. Killifish exhibited significant increases in both Na(+) influx and efflux rates, with efflux slightly lagging behind efflux up to 60% SW, but net Na(+) balance was restored by the time killifish reached 100% SW. Whole body Na(+) did not change, in agreement with the capacity of this species to tolerate daily salinity fluctuations in its natural habitat. In contrast, rainbow trout experienced a dramatic increase in Na(+) influx (50-fold relative to FW values), but not Na(+) efflux between 40 and 60% SW, resulting in a large net loading of Na(+) at higher salinities (60-100% SW), and increases in plasma Na(+) and whole body Na(+) at 100% SW. Killifish were in negative Ca(2+) balance at all salinities, whereas trout were in positive Ca(2+) balance throughout. Ca(2+) influx rate increased two- to threefold in killifish at 80 and 100% SW, but there were no concomitant changes in Ca(2+) efflux. Ca(2+) flux rates were affected to a larger degree in trout, with twofold increases in Ca(2+) influx at 40% SW and sevenfold increases at 100% SW. Again, there was no change in Ca(2+) efflux with salinity, so plasma Ca(2+) concentration increased in 100% SW. As the killifish is regularly submitted to increased salinity in its natural environment, it is able to rapidly activate changes in unidirectional fluxes in order to ensure ionic homeostasis, in contrast to the trout.