American Society for Microbiology, Journal of Bacteriology, 11(189), p. 4014-4019, 2007
DOI: 10.1128/jb.00075-07
Full text: Download
ABSTRACT A single-step pathway for the synthesis of the compatible solute glucosylglycerate (GG) is proposed based on the activity of a recombinant glucosylglycerate synthase (Ggs) from Persephonella marina . The corresponding gene encoded a putative glycosyltransferase that was part of an operon-like structure which also contained the genes for glucosyl-3-phosphoglycerate synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP), the enzymes that lead to the synthesis of GG through the formation of glucosyl-3-phosphoglycerate. The putative glucosyltransferase gene was expressed in Escherichia coli , and the recombinant product catalyzed the synthesis of GG in one step from ADP-glucose and d -glycerate, with K m values at 70°C of 1.5 and 2.2 mM, respectively. This glucosylglycerate synthase (Ggs) was also able to use GDP- and UDP-glucose as donors to form GG, but the efficiencies were lower. Maximal activity was observed at temperatures between 80 and 85°C, and Mg 2+ or Ca 2+ was required for catalysis. Ggs activity was maximal and remained nearly constant at pH values between 5.5 and pH 8.0, and the half-lives for inactivation were 74 h at 85°C and 8 min at 100°C. This is the first report of an enzyme catalyzing the synthesis of GG in one step and of the existence of two pathways for GG synthesis in the same organism.