Published in

American Chemical Society, Inorganic Chemistry, 8(48), p. 3840-3847, 2009

DOI: 10.1021/ic8023748

Links

Tools

Export citation

Search in Google Scholar

Is 2.07 Å a Record for the Shortest Pt−S Distance? Revision of Two Reported X-ray Structures

Journal article published in 2009 by Andrea Ienco ORCID, Maria Caporali, Fabrizio Zanobini, Carlo Mealli
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The comparison of the very similar compounds (Ph(3)P)(2)Pt(mu-S)(2)Pt(PPh(3))(2) (1) and (Ph(2)PyP)(2)Pt(mu-S)(2)Pt(PPh(2)Py)(2) (2) raises intriguing questions about the reliability of the reported Pt(2)S(2) core in 1, where the Pt-S bonds are the shortest ever reported. Also, the trans-annular S...S separation of 2.69 A is surprisingly shorter in 1 than in 2 (3.01 A), but no incipient coupling between two S(2-) bridges seems reasonable in this case. Various considerations lead to reformulate 1 as [(Ph(3)P)(2)Pt(mu-OH)(2)Pt(PPh(3))(2)](BF(4))(2), 3. The sets of cell parameters for 1 and 3 are not equal but two axes match, and the volume of 1 is exactly double. Simple matrices may be constructed to interconvert the direct and reciprocal crystalline cells, thus corroborating their identity of the compounds. It is concluded that, in the structure solution of 1, some atoms were either neglected (BF(4)(-) counterions) or ill identified (sulfido in place of hydroxo bridges), while the structure of 3 was solved by collecting only one-half of the possible reflections (hence, also the different space groups). A new preparation, crystallization and X-ray structure of 3 confirms the above points and dismisses any other theoretical conjecture about two electronically different Pt(2)S(2) cores in 1 and 2.