Published in

Wiley, Journal of Biomedical Materials Research Part A, 3(89A), p. 594-600, 2009

DOI: 10.1002/jbm.a.31975

Links

Tools

Export citation

Search in Google Scholar

Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells

Journal article published in 2009 by C. Capuccini, P. Torricelli, E. Boanini ORCID, M. Gazzano, R. Giardino, A. Bigi
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This article reports the effect of strontium incorporation into hydroxyapatite nanocrystals on bone cells response. Hydroxyapatite nanocrystals were synthesized at strontium contents of 0, 1, 3, 7 atom %. Strontium incorporation for calcium is confirmed by the linear increase of the unit cell parameters of hydroxyapatite, in agreement with the different ionic radii of the two ions. Moreover, strontium substitution slightly affects hydroxyapatite structural order and the shape of the nanocrystals. Osteoblast-like MG63 cells cultured on the nanocrystals display good proliferation and increased values of the differentiation parameters. In particular, when cultured on samples with Sr concentration in the range 3-7 atom %, osteoblasts display increased values of ALP activity, collagen type I, and osteocalcin production. Moreover, the osteoclast number on all the Sr-doped samples is significantly smaller than on hydroxyapatite, and it decreases on increasing strontium content. The data indicate that strontium stimulates osteoblast activity and exerts its inhibitory effect on osteoclast proliferation even when incorporated into hydroxyapatite.