Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(5), 2015

DOI: 10.1038/srep14883

Links

Tools

Export citation

Search in Google Scholar

Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bursting bubbles at the ocean-surface produce airborne saltwater spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray's water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OM ss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OM ss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts. The marine aerosol produces haze and cloud layers overlying an immense ocean covering > 70% of the Earth's surface. Small changes even in low-albedo layers superimposing this relatively dark surface can have profound effects on the global radiation budget and climate change. Organic matter mass-fraction enrichment in sea spray aerosol (OM ss , defined here as the percentage OM mass in sea spray relative to the total OM plus sea salt mass) influences the global albedo through altering the reflectance of marine haze 1 and cloud layers 2. Recent results 3 assert that a relatively constant sea surface carbon pool controls