Published in

Mary Ann Liebert, Tissue Engineering Part C: Methods, 3(14), p. 221-232, 2008

DOI: 10.1089/ten.tec.2007.0428

Links

Tools

Export citation

Search in Google Scholar

Development of Defined Media for the Serum-Free Expansion of Primary Keratinocytes and Human Embryonic Stem Cells

Journal article published in 2008 by Sean Richards, David Leavesley ORCID, Gemma Topping, Zee Upton
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Primary keratinocyte (Kc) cells and human embryonic stem (hES) cells are routinely propagated on a mouse fibroblast feeder layer in media containing fetal bovine serum or other nondefined factors. One disadvantage of using these nondefined factors is that they may inadvertently contaminate the culture system with infectious agents; thus, there remains a need to develop safe culture conditions free from poorly defined and/or animal products. Our laboratory has discovered that growth factors (GFs) and vitronectin (VN) can bind to each other resulting in synergistic short-term functional effects in several cell types. The aim of the current study was to determine whether primary Kc and hES cells can be established and serially propagated serum-free using medium containing VN, insulin-like growth factor-I, and insulin-like growth factor binding protein-3 (VN:GF). Here we demonstrate that primary Kc cells can be isolated, established, serially propagated, and re-form an epidermal layer using the VN:GF combination. Additionally, cell proliferation studies indicate that the Kcs proliferate using the VN:GF combination at a rate comparable to cells grown using serum. Similarly, we verified that this VN:GF combination could be employed for the serial propagation of hES cells. Importantly, both the Kc and hES cells retain their undifferentiated phenotype when cultured using the VN:GF combinations as a serum-free medium for up to 4 passages for Kc and at least 10 passages for hES cells as indicated by the expression of a range of cell surface markers. This study demonstrates that the novel, fully defined VN:GF medium is a viable alternative to media containing serum and highlights the potential of this technology for generating therapeutically viable cells and tissues.