Published in

Elsevier, Biological Psychiatry, 5(79), p. 415-420

DOI: 10.1016/j.biopsych.2015.09.012

Links

Tools

Export citation

Search in Google Scholar

Molecular Histochemistry Identifies Peptidomic Organization and Reorganization Along Striatal Projection Units

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) (MALDI-IMS) provides a technical means for simultaneous analysis of precise anatomic localization and regulation of peptides. We explored the technical capability of matrix-assisted laser desorption ionization mass spectrometry for characterization of peptidomic regulation by an addictive substance along two distinct projection systems in the mouse striatum. The spatial expression patterns of substance P and proenkephalin, marker neuropeptides of two distinct striatal projection neurons, were negatively correlated at baseline. We detected 768 mass/charge (m/z) peaks whose expression levels were mostly negatively and positively correlated with expression levels of substance P and proenkephalin A (amino acids 218-228), respectively, within the dorsal striatum. After nicotine administration, there was a positive shift in correlation of mass/charge peak expression levels with substance P and proenkephalin A (218-228). Our exploratory analyses demonstrate the technical capacity of MALDI-IMS for comprehensive identification of peptidomic regulation patterns along histochemically distinguishable striatal projection pathways.