Dissemin is shutting down on January 1st, 2025

Published in

Microbiology Society, Microbiology, 6(155), p. 2021-2028, 2009

DOI: 10.1099/mic.0.025981-0

Links

Tools

Export citation

Search in Google Scholar

Small heat-shock protein Hsp12 contributes to yeast tolerance to freezing stress

Journal article published in 2009 by A. Pacheco, C. Pereira ORCID, M. J. Almeida, M. J. Sousa ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The HSP12 gene encodes one of the two major small heat-shock proteins of Saccharomyces cerevisiae and is induced under different conditions, such as low and high temperatures, osmotic or oxidative stress and high sugar or ethanol concentrations. However, few studies could demonstrate any correlation between HSP12 deletion or overexpression and a phenotype of sensitivity/resistance, making it difficult to attribute a role for Hsp12p under several of these stress conditions. We investigated the possible role of Hsp12p in yeast freezing tolerance. Contrary to what would be expected, the hsp12 null mutant when subjected to prolonged storage at -20 degrees C showed an increased resistance to freezing when compared with the isogenic wild-type strain. Because the mutant strain displayed a higher intracellular trehalose concentration than the wild-type, which could mask the effect of manipulating HSP12, we overexpressed the HSP12 gene in a trehalose-6-phosphate synthase (TPS1) null mutant. The tps1Delta strain overexpressing HSP12 showed an increase in resistance to freezing storage, indicating that Hsp12p plays a role in freezing tolerance in a way that seems to be interchangeable with trehalose. In addition, we show that overexpression of HSP12 in this tps1Delta strain also increased resistance to heat shock and that absence of HSP12 compromises the ability of yeast cells to accumulate high levels of trehalose in response to a mild heat stress.