Published in

Nature Research, Nature Communications, 1(6), 2015

DOI: 10.1038/ncomms7439

Links

Tools

Export citation

Search in Google Scholar

Structure of p15PAF–PCNA complex and implications for clamp sliding during DNA replication and repair

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The intrinsically disordered protein p15 PAF regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15 PAF –PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP-box) of p15 PAF tightly bound to the front-face of PCNA. In contrast to other PCNA-interacting proteins, p15 PAF also contacts the inside of, and passes through, the PCNA ring. The disordered p15 PAF termini emerge at opposite faces of the ring, but remain protected from 20S proteasomal degradation. Both free and PCNA-bound p15 PAF binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15 PAF acts as a flexible drag that regulates PCNA sliding along the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding.