Published in

Elsevier, Current Applied Physics, 1(13), p. 7-11, 2013

DOI: 10.1016/j.cap.2012.06.003

Links

Tools

Export citation

Search in Google Scholar

High performance organic planar heterojunction solar cells by controlling the molecular orientation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A highly efficient planar heterojunction OSC based on zinc phthalocyanine (ZnPc)/fullerene (C60) by controlling the orientation of the ZnPc by using copper iodide (CuI) as the interfacial layer is reported. The proportion of face-on ZnPc molecules was increased significantly on the CuI layer compared to the layer without the CuI layer, which was analyzed with wide-angle X-ray scattering (WAXS) and optical absorption. The power conversion efficiency (PCE) of the orientation controlled planar heterojunction OSC was remarkably enhanced to 3.2 ± 0.1% compared with 1.2 ± 0.1% of the conventional OSCs without the control of the molecular orientation. By inserting the 3-nm-thick CuI layer, JSC, VOC and FF have increased from 4.6 ± 0.2 to 8.9 ± 0.2 mA cm−2, from 0.48 ± 0.01 to 0.59 ± 0.02 V, and from 0.56 ± 0.01 to 0.61 ± 0.02, respectively. VOC enhancement is discussed with the result of the ultraviolet photoemission spectra (UPS) measurements.