Published in

Brill Academic Publishers, IAWA Journal, 2(25), p. 217-230, 2004

DOI: 10.1163/22941932-90000362

Links

Tools

Export citation

Search in Google Scholar

Anatomical characterisation and variability of the thistle Cynara cardunculus in view of pulping potential

Journal article published in 2004 by Teresa Quilhó, Jorge Gominho ORCID, Helena Pereira ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The thistle Cynara cardunculus L. is an herbaceous perennial with high productivity that is harvested annually and is a potential fibre crop for paper pulp production. The anatomical variation within stalks was studied (base, middle and top) and compared in C. cardunculus plants at different development phases. The stalk of C. cardunculus includes an epidermis, cortex and a central cylinder with fibro-vascular bundles with phloem, xylem and a fibrous sheath that is variable in arrangement and size within and between plants. At harvest, the pith represents 37% of the stalk transectional area and 7% of the total weight. There was a slight variation in quantitative features of, respectively, the three development groups studied; mean fibre length was 1.04 mm, 0.95 mm and 1.05 mm; mean fibre width was 15 μm, 16 μm and 21 μm; mean fibre wall thickness was 3.2 μm, 3.4 μm and 4.9 μm. Fibre length and width decreased within the stem from base to top, while fibre wall thickness increased. Mean vessel diameter was 22 μm and mean vessel element length 220–483 μm. In mature plants, parenchyma represents 39% of the total transectional area and fibres 25%. The proportion of fibres increases during plant development and in mature plants is highest at the stalk base. As regards anatomical features, Cynara stalks compare favourably to other annual plants and fibre biometry indicates good potential for paper sheet forming and strength properties.