Published in

The Company of Biologists, Journal of Cell Science, 20(121), p. 3347-3356, 2008

DOI: 10.1242/jcs.028134

Links

Tools

Export citation

Search in Google Scholar

 II- V spectrin bridges the plasma membrane and cortical lattice in the lateral wall of the auditory outer hair cells

Journal article published in 2008 by K. Legendre, S. Safieddine, P. Kussel-Andermann, C. Petit, A. El-Amraoui ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The sensitivity and frequency selectivity of the mammalian cochlea involves a mechanical amplification process called electromotility, which requires prestin-dependent length changes of the outer hair cell (OHC) lateral wall in response to changes in membrane electric potential. The cortical lattice, the highly organized cytoskeleton underlying the OHC lateral plasma membrane, is made up of F-actin and spectrin. Here, we show that alphaII and two of the five beta-spectrin subunits, betaII and betaV, are present in OHCs. betaII spectrin is restricted to the cuticular plate, a dense apical network of actin filaments, whereas betaV spectrin is concentrated at the cortical lattice. Moreover, we show that alphaII-betaV spectrin directly interacts with F-actin and band 4.1, two components of the OHC cortical lattice. betaV spectrin is progressively recruited into the cortical lattice between postnatal day 2 (P2) and P10 in the mouse, in parallel with prestin membrane insertion, which itself parallels the maturation of cell electromotility. Although betaV spectrin does not directly interact with prestin, we found that addition of lysates derived from mature auditory organs, but not from the brain or liver, enables betaV spectrin-prestin interaction. Using this assay, betaV spectrin, via its PH domain, indirectly interacts with the C-terminal cytodomain of prestin. We conclude that the cortical network involved in the sound-induced electromotility of OHCs contains alphaII-betaV spectrin, and not the conventional alphaII-betaII spectrin.