American Association for the Advancement of Science, Science, 5558(295), p. 1311-1314, 2002
Full text: Download
During asexual development within erythrocytes, malaria parasites synthesize considerable amounts of membrane. This activity provides an attractive target for chemotherapy because it is absent from mature erythrocytes. We found that compounds that inhibit phosphatidylcholine biosynthesis de novo from choline were potent antimalarial drugs. The lead compound, G25, potently inhibited in vitro growth of the human malaria parasites Plasmodium falciparum and P. vivax and was 1000-fold less toxic to mammalian cell lines. A radioactive derivative specifically accumulated in infected erythrocytes to levels several hundredfold higher than in the surrounding medium, and very low dose G25 therapy completely cured monkeys infected with P. falciparum and P. cynomolgi .