Published in

Journal of Neural Transmission. Supplementa, p. 261-268

DOI: 10.1007/978-3-211-45295-0_40

Links

Tools

Export citation

Search in Google Scholar

Limitations of cellular models in Parkinson's disease research

Journal article published in 2006 by Falkenburger Bh, B. H. Falkenburger ORCID, Schulz Jb, J. B. Schulz
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Cell cultures for Parkinson's disease research have the advantage of virtually unlimited access, they allow rapid screening for disease pathogenesis and drug candidates, and they restrict the necessary number of animal experiments. Limitations of cell cultures, include that the survival of neurons is dependent upon the culture conditions; that the cells do not develop their natural neuronal networks. In most cases, neurons are deprived from the physiological afferent and efferent connections. In Parkinson's disease research, mesencephalic slice cultures, primary immature dopaminergic neurons and immortalized cell lines--either in a proliferating state or in a differentiated state--are used. Neuronal cultures may be plated in the presence or absence of glial cells and serum. These different culture conditions as well as the selection of outcome parameters (morphological evaluation, viability assays, biochemical assays, metabolic assays) have a strong influence on the results of the experiments and the conclusions drawn from them. A primary example is the question of whether L-Dopa is toxic to dopaminergic neurons or whether it provides neurotrophic effects: In pure, neuronal-like cultures, L-Dopa provides toxicity, whereas in the presence of glial cells, it provides trophic effects when applied. The multitude of factors that influence the data generated from cell culture experiments indicates that in order to obtain clear-cut and unambiguous results, investigators need to choose their model carefully and are encouraged to verify their main results with different models.